The Role of MicroRNA-381 in Chondrogenesis and Interleukin-1-β Induced Chondrocyte Responses.
نویسندگان
چکیده
AIM The molecular pathways regulating cartilage degradation are unclear. miR-381 was identified as a putative regulator of chondrogenesis related genes. Here, we examined its role in chondrogenesis and osteoarthritic cartilage degeneration. METHODS miR-381 expression was assessed in vitro in response to IL-1β stimulation in primary human (PHC) and mouse (PMC) chondrocytes, and ATDC5 derived chondrocytes; and in vivo in mouse embryos and human osteoarthritic cartilage. The effects of miR-381 on chondrogenesis and NF-kB signaling were assessed using a synthetic RNA mimic or inhibitor and luciferase assay, respectively. Upstream regulators of miR381 were probed using siRNA or overexpression plasmids for Sox9 and Runx2. RESULTS miR-381 expression was elevated in chondrogenic and hypertrophic ATDC5 cells. miR-381 was induced in vitro by IL-1β in ATDC5 cells, PMCs, and PHCs, and was expressed in areas of cartilage degradation or absorption in vivo. Overexpression of Runx2 or Sox9 increased miR-381 expression in ATDC5 cells. miR-381 suppressed expression of collagen, type II, alpha 1, and enhanced expression of metalloproteinase-13 (MMP-13), but did not regulate NFKBIA and NKRF activity. CONCLUSION miR-381 was highly expressed during chondrogenesis and in arthritic cartilage. It may contribute to absorption of the cartilage matrix by repressing type II collagen and inducing MMP-13.
منابع مشابه
MicroRNA-381 Regulates Chondrocyte Hypertrophy by Inhibiting Histone Deacetylase 4 Expression
Chondrocyte hypertrophy, regulated by Runt-related transcription factor 2 (RUNX2) and matrix metalloproteinase 13 (MMP13), is a crucial step in cartilage degeneration and osteoarthritis (OA) pathogenesis. We previously demonstrated that microRNA-381 (miR-381) promotes MMP13 expression during chondrogenesis and contributes to cartilage degeneration; however, the mechanism underlying this process...
متن کاملPresence and function of microRNA-92a in chondrogenic ATDC5 and adipose-derived mesenchymal stem cells
The aim of the present study was to investigate the presence and biological function of microRNA-92a (miR-92a) in chondrogenesis and cartilage degeneration. Human adipose‑derived mesenchymal stem cells (hADSCs) in micromass and chondrocyte‑like ATDC5 cells were induced to chondrogenesis, and primary human/mouse chondrocytes (PHCs/PMCs) and chondrogenic ATDC5 cells were stimulated with interleuk...
متن کاملDeferoxamine synergizes with transforming growth factor-β signaling in chondrogenesis
Osteoarthritis, also known as degenerative arthritis or degenerative joint disease, is an epidemic disease that affects millions of people worldwide. Despite extensive recent work on the cellular biology of osteoarthritis, the precise mechanisms involved are still poorly understood and there is no effective treatment for this disease. The role of transforming growth factor-beta (TGF-β) in promo...
متن کاملRegulation of articular chondrocyte phenotype by bone morphogenetic protein 7, interleukin 1, and cellular context is dependent on the cytoskeleton.
Bone morphogenetic proteins (BMPs) induce cartilage differentiation and morphogenesis. There are profound changes in the cytoskeletal architecture during the morphogenesis of cartilage. To investigate the possibility that morphogenetic signals such as BMPs may regulate chondrocyte phenotype by modulation of cytoskeletal protein expression, we determined whether the expression and distribution o...
متن کاملThe effect of high frequency electric field on enhancement of chondrogenesis in human adipose-derived stem cells
Objective(s):Osteoarthritis (OA) is globally one of the most common diseases from the middle age onwards. Cartilage is an avascular tissue therefore it cannot be repaired in the body. Conservative treatments have failed as a good remedy and cell therapy as a decisive cure is needed. One of the best and easily accessible cell sources for this purpose is adipose-derived stem cells which can be di...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology
دوره 36 5 شماره
صفحات -
تاریخ انتشار 2015